4 resultados para treatment effect

em WestminsterResearch - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohol binge drinking, especially in teenagers and young adults is a major public health issue in the UK, with the number of alcohol related liver disorders steadily increasing. Understanding the mechanisms behind liver disease arising from binge-drinking and finding ways to prevent such damage are currently important areas of research. In the present investigation the effect of acute ethanol administration on hepatic oxidative damage and apoptosis was examined using both an in vivo and in vitro approach; the effect of micronutrient supplementation prior and during ethanol exposure was also studied. The following studies were performed: (1) ethanol administration (75 mmol/kg body weight) and cyanamide pre-treatment followed by ethanol to study elevated acetaldehyde levels with liver tissue analysed 2.5, 6 and 24 hours post-alcohol; (2). Using juvenile animals, 2% betaine supplementation followed by acute ethanol with tissue analysed 24 hrs post ethanol; and (3). Micronutrient supplementation during concomitant ethanol exposure to hepG2 cells. It was found that a single dose of alcohol caused oxidative damage to the liver of rats at 2.5 hr post-alcohol as evidenced by decreased glutathione levels and increased malondialdehyde levels in both the cytosol and mitochondria. Liver function was also depressed but there were no findings of apoptosis as cytochrome c levels and caspase 3 activity was unchanged. At 6 hours, the effect of ethanol was reduced suggesting some degree of recovery, however, by 24 hours, increased mitochondrial oxidative stress was apparent. The effect of elevated acetaldehyde on hepatic damage was particularly evident at 24 hours, with some oxidative changes at earlier time points. At 24 hours, acetaldehyde caused a profound drop in glutathione levels in the cytosol and hepatic function was still deteriorating. Studies examining ethanol exposure to juvenile livers showed that glutathione levels were increased, suggesting an overtly protective response not seen in with older animals. It also showed that despite cytochrome c release into the cytosol, caspase-3 levels were not increased. This suggests that ATP depletion is preventing apoptosis initiation. Betaine supplementation prevented almost all of the alcohol-mediated changes, suggesting that the main mechanism behind alcohol-mediated liver damage is oxidative stress. Results using the hepG2 cell line model showed that micronutrients involved in glutathione synthesis can protect against hepatocyte damage caused by alcohol metabolism, with reduced reactive oxygen species and increased/maintained glutathione levels. In summary, these results demonstrate that both acute alcohol and acetaldehyde can have damaging effects to the liver, but that dietary intervention may be able to protect against ethanol induced oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ntroduction: Osteoarthritis (OA) is a degenerative joint disease affecting more than 8.5 million people in the UK. Disruption in the catabolic and anabolic balance, with the catabolic cytokine Interleukin 1 beta (IL-1β) being involved in the initiation and progression of OA (1). Melanocortin peptides (α-MSH and D[Trp8]-γ-MSH) exert their anti-inflammatory effects via activation of melanocortin receptors (MC), with both MC1 and MC3 being identified as promising candidates as novel targets for OA (2). This study aims to assess the chondroprotective and anti-inflammatory effects of the pan melanocortin receptor agonist α-MSH and MC3 agonist D[Trp8]-γ-MSH following IL-1β chondrocyte stimulation. Methods: RT-PCR/ Western Blot: Human C-20/A4 chondrocytic cell-line were cultured in 6 well plates (1x106 cells/well) and harvested to determine MC and IL-1β expression by RT-PCR, and Western Blot. Cell-Culture: Cells were cultured in 96 well plates (1x106 cells/well) and stimulated with H2O2 (0.3%), TNF-α (60 pg/ml) or IL-1β (0-5000pg/ml) for 0-72h and cell viability determined. Drug Treatment: In separate experiments cells were pre-treated with 3 μg/ml α-MSH (Sigma-Aldrich Inc. Poole, UK), or D[Trp8]-γ-MSH (Phoenix Pharmaceuticals, Karlsrhue, Germany) (all dissolved in PBS) for 30 minutes prior to IL-1β (5000pg/ml) stimulation for 6-24h. Analysis: Cell viability was determined by using the three cell viability assays; Alamar Blue, MTT and the Neutral Red (NR) assay. Cell-free supernatants were collected and analysed for Interleukin -6 (IL-6) and IL-8 release by ELISA. Data expressed as Mean ± SD of n=4-8 determination in quadruplicate. *p≤ 0.05 vs. control. Results: Both RT-PCR, and Western Blot showed MC1 and MC3 expression on C-20/A4 cells. Cell viability analysis: IL-1β stimulation led to a maximal cell death of 35% at 6h (Alamar Blue), and 40% and 75% with MTT and Neutral Red respectively at 24h compared to control. The three cell viability assays have different cellular uptake pathways, which accounts for the variations observed in cell viability in response to the concentration of IL-1β, and time. Cytokine analysis by ELISA: IL-1β (5000pg/ml) stimulation for 6 and 24h showed maximal IL-6 production 292.3 ±3.8 and 275.5 ±5.0 respectively, and IL-8 production 353.3 ±2.6 and 598.3 ±8.6 respectively. Pre-treatment of cells with α-MSH and D[Trp8]-γ-MSH caused significant reductions in both IL-6 and IL-8 respectively following IL-1β stimulation at 6h. Conclusion: MC1/3 are expressed on C-20/A4 cells, activation by melanocortin peptides led to an inhibition of IL-1β induced cell death and pro-inflammatory cytokine release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract AIMS: The aim of the present study was to investigate whether selective antagonism of the cysteine-X-cysteine chemokine receptor-2 (CXCR2) receptor has any adverse effects on the key innate effector functions of human neutrophils for defence against microbial pathogens. METHODS: In a double-blind, crossover study, 30 healthy volunteers were randomized to treatment with the CXCR2 antagonist AZD5069 (100 mg) or placebo, twice daily orally for 6 days. The peripheral blood neutrophil count was assessed at baseline, daily during treatment and in response to exercise challenge and subcutaneous injection of granulocyte-colony stimulating factor (G-CSF). Neutrophil function was evaluated by phagocytosis of Escherichia coli and by the oxidative burst response to E. coli. RESULTS: AZD5069 treatment reversibly reduced circulating neutrophil count from baseline by a mean [standard deviation (SD)] of -1.67 (0.67) ×10(9) l(-1) vs. 0.19 (0.78) ×10(9) l(-1) for placebo on day 2, returning to baseline by day 7 after the last dose. Despite low counts on day 4, a 10-min exercise challenge increased absolute blood neutrophil count, but the effect with AZD5069 was smaller and not sustained, compared with placebo treatment. Subcutaneous G-CSF on day 5 caused a substantial increase in blood neutrophil count in both placebo- and AZD5069-treated subjects. Superoxide anion production in E. coli-stimulated neutrophils and phagocytosis of E. coli were unaffected by AZD5069 (P = 0.375, P = 0.721, respectively vs. baseline, Day 4). AZD5069 was well tolerated. CONCLUSIONS: CXCR2 antagonism did not appear adversely to affect the mobilization of neutrophils from bone marrow into the peripheral circulation, phagocytosis or the oxidative burst response to bacterial pathogens. This supports the potential of CXCR2 antagonists as a treatment option for diseases in which neutrophils play a pathological role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetate is a short chain fatty acid produced as a result of fermentation of ingested fibers by the gut microbiota. While it has been shown to reduce cell proliferation in some cancer cell lines1,2, more recent studies on liver3 and brain4 tumours suggest that acetate may actually promote tumour growth. Acetate in the cell is normally converted into acetyl-coA by two enzymes and metabolized; mitochondrial (ACSS1) and cytosolic (ACSS2) acetyl-coA synthetase. In the mitochondria acetyl-coA is utilized in the TCA cycle. In the cytosol it is utilized in lipid synthesis. In this study, the effect of acetate treatment on the growth of HT29 colon cancer cell line and its mechanism of action was assessed. HT29 human colorectal adenocarcinoma cells were treated with 10mM NaAc and cell viability, cellular bioenergetics and gene expression were investigated. Cell viability was assessed 24 hours after treatment using an MTT assay (Sigma, UK, n=8). Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured by XFe Analyzer (Seahorse Bioscience, USA). After a baseline reading cells were treated and OCR and ECAR measurements were observed for 18 hours (n=4). Total mRNA was isolated 24 hours after treatment using RNeasy kit (Qiagen, USA). Quantitative PCR reactions were performed using Taqman gene expression assays and Taqman Universal PCR Master Mix (ThermoFisher Scientific, UK) on Applied Biosystems 7500 Fast Real-Time PCR System (Life Technologies, USA) and analysed using ΔΔCt method (n=3). Acetate treatment led to a significant reduction in cell viability (15.9%, Figure 1). OCR, an indicator of oxidative phosphorylation, was significantly increased (p<0.0001) while ECAR, an indicator of glycolysis, was significantly reduced (p<0.0001, Figure 2). Gene expression of ACSS1 was increased by 1.7 fold of control (p=0.07) and ACSS2 expression was reduced to 0.6 fold of control (p=0.06, Figure 3). In conclusion, in colon cancer cells acetate supplementation induces cell death and increases oxidative capacity. These changes together with the trending decrease in ACSS2 expression suggest suppression of lipid synthesis pathways. We hypothesize that the reduced tumor growth by acetate is a consequence of the suppression of ACSS2 and lipid synthesis, both effects reported previously to reduce tumor growth3–5. These effects clearly warrant further investigation.